
IJSRST16238 | Received: 05 May 2016 | Accepted: 17 May 2016 | May-June 2016 [(2)3: 45-50]

© 2016 IJSRST | Volume 2 | Issue 3 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

 45

 Mitigation of Security Attack in Android Application Using Pin Tool

Sisara Lalji C., Prof. B. V. Buddhadev

Department of Information Technology, Shantilal Shah Government Engineering College, Bhavnagar, Gujarat, India

ABSTRACT

The popularity and adoption of smartphones has greatly stimulated the spread of mobile malware, especially on the

popular platforms such as Android. In light of their rapid growth, there is a pressing need to develop effective

solutions. In the past few years, mobile devices (smartphones, PDAs) have seen both their computational power and

their data connectivity rise to a level nearly equivalent to that available on small desktop computers, while becoming

ubiquitous. On the downside, these mobile devices are now an extremely attractive target for large-scale security

attacks. Mobile device middleware is thus experiencing an increased focus on attempts to mitigate potential security

compromises. In particular, Android incorporates by design many well-known security features such as privilege

separation. In this thesis the Android security model and some potential weaknesses of the model is described.

Thesis provides taxonomy of attacks to the platform demonstrated by real attacks that in the end guarantee

privileged access to the device and mitigation technique for the same attack would be proposed. The result analysis

and testing would be done on mitigation technique.

Keywords: Dynamic Analysis, Runtime, Binary Instrumentation, Pin, Pin tool, Intel, Just-in-time compiler, security

attack, android Attack.

I. INTRODUCTION

Instrumentation is a simple technique for inserting any

extra line of code in to an application to observe its

behavior. It can be performed at various stages – inside

the source code, at compile time, post link time, or even

at run time. Source Code Instrumentation is a way to

instrument source programs and Binary Instrumentation

is to instrument binary executable directly Static binary

instrumentation (SBI) occurs before the program is run

phase, a phase in which we can rewrite executable code

or object code. Dynamic binary instrumentation (DBI) is

done at run time.

Program Analysis

Static Analysis and Dynamic Analysis:

Static analysis is the process of analysing the source

code or machine code of the program without need of

running it Dynamic analysis is the process of analysing

program as it executes or at the runtime.

Source Analysis and Binary Analysis:

Source analysis is the process of analysing programs at

the level of source code. Source analysis are generally

done for the points of programming language constructs

such as expressions, statements, functions, and variables.

Binary analysis is the process of analysing programs at

the level of machine code, that stored either as object

code (pre-linking) or executable code (post-linking). In

this category, we have analysis that are performed at the

level of executable intermediate representations, such as

byte-codes, that runs on a particular virtual machine.

Binary analysis are generally done for the points

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

46

machine entities, such as registers, memory locations,

procedures, and instructions.

Pin

Pin has been the framework of choice for researchers

working on program analysis and related tools. It can

be used for several purposes, but mostly for program

analysis (memory allocation analysis, error detection,

performance profiling, etc...) and for architectural study

(processor and cache simulation, trace collection, etc…).

PIN is a dynamic binary instrumentation engine or

framework. Pin is used for the instrumentation of

software programs. It supports many platforms like

Windows, Linux, Mac OS and Android executable for

IA-32, and Intel(R) 64[4]. The Pin allows a programmer

to insert any arbitrary code (written in C or C++) at

arbitrary places in the executable (run time of any

program). The code is added dynamically while the

executable (program) is in the running phase. The input

to this compiler is not byte code, but a regular

executable. Pin dynamically re-compiles the application

during execution. The Pin kit includes many tools (they

can be found at: pin-w-x-y-android/source/tools). The

tools are provided as source files .Pin provides the

framework and API.

Pin Architecture

 Figure 1. Pin architecture [1]

Pin consists of a virtual machine (VM), a code cache,

and an instrumentation API invoked by Pin tools. The

VM consists of a just-in-time compiler (JIT), an

emulator, and a dispatcher. After Pin control of the

application, the VM coordinates its components to

execute the application. The JIT compiles and

instruments application code, which is then launched by

the dispatcher. The compiled code is stored in the code

cache. The emulator interprets instructions that cannot

be executed directly. It is used for system calls which

require special handling from the VM. (E.g. system calls)

II. METHODS AND MATERIAL

A. Pin Tool

Applying pin tool to application

After developing pin tool, next step is to apply it to an

application as follows:

Pin [pin-option]... -t [tool name] [tool-options]... --

[application] [application- option]

The following options are the ones that are frequently

used:

• -t tool name: defines the specific pin tool to use.

• -pause tool n: an option which prints out the process

id and then pause Pin for n Seconds to allow it

attaching with gdb.

• -pid pid: used to attach pin tool to an already

running process (executable) with the Given process

id.

Pin tool is the instrumentation program. Pin tools run on

Pin to perform meaningful tasks. The inscount pin tool is

used to find out the number of instructions in the

running program.

Instrumentation consists of two components:

1. A mechanism that decides where and what code is

inserted

2. The code to execute at insertion points

These two components are instrumentation and analysis

code.

III. LITERATURE REVIEW

1. Pin: Building Customized Program Analysis

Tools with Dynamic Instrumentation

In this Paper they have described that pin is robust and

powerful software instrumentation tool for program

analysis tasks such as

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

47

1) Profiling

2) Performance Evaluation

3) Bug Detection

2. Behavioral Analysis of Android Applications

Using Automated Instrumentation

In this paper, they present efforts on effective security

inspection mechanisms for identification of malicious

applications for Android mobile applications.

1) Count the number of Instruction in the original

Application.

2) Count the number of Instruction in the Malicious

Application.

3) If Number of Instruction are different then know

there are some extra line of code in the application

code

3. All Your Droid Are Belong to Us: A Survey of

Current Android Attacks

In this paper we look to Android as a specific instance of

mobile computing. We first discuss the Android security

model and some potential weaknesses of the model. We

then provide taxonomy of attacks to the platform

demonstrated by real attacks that in the end guarantee

privileged access to the device. Where possible, we also

propose mitigations for the identified vulnerabilities.

4. Analysis and Research of System Security Based

on Android

In this paper, it has analysis Android system's security

mechanisms with widely used in mobile platforms. It

has separately introduced its system architecture,

security mechanism and safety problems. Through it has

analysis Android security mechanisms and its

components; it has set to the Android security, safety

mechanism side, system security and data security. It has

promoted system security to system permission. At the

same time it analysis the Android security risks, it has

deeply researched the attack based on Linux kernel. It

has proposed security mechanisms based on SELinux

policy theory to ensure system security on application

program framework layer.

5. Patch droid: scalable third party security patches

for android devices.

In this paper they have presented patch droid, a System

to patch security vulnerabilities on legacy android

Android devices, Patch droid uses dynamic

instrumentation techniques to patch vulnerabilities in

memory, and uses a path distribution service so that

patches only have to be created once and can be

deployed on every devices. Because patches are injected

directly into the processes, Patch droid does not need to

flash or modify system partitions or binaries, making it

universally deployable even on tightly controlled

devices.

Proposed System

6. Mitigation of security attack in android

application using pin tool

Figure 2. Mitigation of security attack in android

application using pin tool

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

48

Figure 3. Proposed steps

IV. RESULT AND DISCUSSION

Getting the system ready

Table 2. System Specification

Installation on Ubuntu

Figure 4. Install Ubuntu in my system

Install Android SDK and AVD, Eclipse

Start eclipse and AVD.

Malicious calculator android application in eclipse.

There are two values add, mul, sub, div.

Figure 5. Install Android SDK and AVD, Eclipse in

Implement pin framework on system

Start the terminal and use to command

Run on pin this command. /pin –version and. /pin --

/system/bin/ls.

Figure 6. The pin framework version on android avd

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

49

Before output of malicious calculator application

Figure 7. Output of malicious calculator application

Mitigate malicious calculator application using pin

tool

We have compiled the mitigation pin tool in the android

avd and then attached it to the running android

application. The application we used is

CalculatorApp.apk. As we can see the image that the

directory of the bin in the android avd contains a file

name “mitigation.out”. This file is made when we have

compiled and attached the pin tool to the application

process. When we open that file we can see mitigate

attack during the running of the Malicious Calculator

Application.

Figure 8. Mitigate attack in malicious calculator

application using pin tool

Final output of calculator application

Figure 9. Mitigate attack in malicious calculator

application using pin tool

Count the number of instruction for calculator

application using pin tool

Inscount pin tool

Above code runs on pin framework

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

50

Figure 10. Output of inscount count pin tool

V. CONCLUSION

We have presented a method of mitigation of security

attack in Android Applications using Pin tool which

allows the user to instrument an Android Application.

Instrumented code alters the behaviour of the original

application and the attacker can’t find the right way to

inject his own code into the running Application.

Moreover instrumentation can also be used as a

protecting weapon. So here we have used pin tool to

mitigation of security attack in android application.

VI. FUTURE WORK

• In future on any malicious android application and

mitigate this malicious android application using

pin tool,

• Any android application counts the number of

instructions and run on pin framework.

VII. REFERENCES

[1] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish

Patil, Artur Klauser, Geoff Lowney , Steven

Wallace, Vijay Janapa Reddi, Kim

Hazelwood,"Pin: Building Customized Program

Analysis Tools with Dynamic Instrumentation"

PLDI '05 Proceedings of the 2005 ACM SIGPLAN

conference on Programming language design and

implementation Pages 190-200. and

www.pintool.org

[2] Android Kernel Issues.http://www.kandroid.org.

[3] Intel. IA-32 Intel Architecture Software

Developer’s Manual Vols 1-3, 2003.

[4] Just because it’s signed doesn’t mean it isn’t spying

on you. http://www.f-secure.com/weblog/

archives/00001190.html, May 2007.

[5] J. Oberheide. Remote kill and install on google

android.

http://jon.oberheide.org/blog/2010/06/25/remote-

kill-and-installon- google-android/

[6] http://www.herongyang.com/Android/Activity-

Introduction-of-Activity-Lifecycle.html

